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Ah51mcL A model of condensed disordered systems. based on theories of random 
spalial and temporal processes for local atomic SINCIUES, is used U, derive analytic 
expressions for the contribution of the diffusive atomic motion to the van Hove time 
correlalion function G D ( ~ ,  t )  and its spectral rrpresentatians The spatial random 
process determines the static atomic correlations in space whereas the remporal diffusion 
process mnwibutes to the central (Rayleigh) p k  of lhe dynamic scattering function 
S,(k, U). The daxation time of lhe intermediate scaltering function F o ( k ,  t )  exhibill 
the known phenomenon of slaving down in the neighbourhood of the first peak of S(k), 
but in the limil of mal l  k it =mains finite, mntrary to the infinite slowing down of heat 
dissipation predicled ty linearized hydrodynamics. 

1. Introduction 

The collective modes predicted by linearized hydrodynamics have served as a useful 
reference state and guide in modelling the shape of the dynamic scattering function 
(structure factor) S( k, w )  of liquids as a function of frequency w up to the region of 
large wavevectors k (wavelengths of the order of interatomic distances), even when 
no distinct side peaks or shoulders typical of sound modes could be observed [l-31. In 
the notation of de Schepper and co-workers [1,3] the intermediate scattering function 
has the following form: 

F( k, 2)  = Ab( k) exp[-rb( k)2] + 2A,( k) exp[-r,( k ) t ]  cos[wS( k )  t] (1) 

where A, (k )  and A,(k) are the weights of a heat mode and of two sound modes, 
respectively, and z b ( k )  and r , ( k )  are the decay rates of a heat mode and of two 
sound modes, respectively. In the limit of small k, one has according to linearized 
hydrodynamics 

z h ( k )  = D,P z , ( k )  = rk2 w , ( k )  = c,k (2) 
where D, is the thermal diffusivity, r the sound attenuation coefficient and cs the 
velocity of sound. Nevertheless, even for large k-values, equation (1) can still be 
fitted well to empirical scattering or computer simulation data, using now Ai(,k), 
z j ( k ) ,  j E h, s, and ws as adjustable parameters for each k separately. The mllection 
of such parameters thus constitutes their empirical k-dependence. 

However, in linear hydrodynamics the collective modes are related only to the 
ordered motion of the atoms in the liquid. The dissipative processes considered are 
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concerned only with aansformation of internal enerm into heat by large-scale density 
fluctuations and ignore the diffusive motion of the atoms which is responsible for the 
time evolution of the microscopic spatial correlations between pairs of atoms. This 
is manifest not only in the large-k range but also in the limit of small k where the 
width of the central (Rayleigh) peak of S(k ,w) ,  which according to (2) must shrink 
to zero, evidently remains finite [4]. 

In the following we offer an alternative approach to the modelling of the pair 
correlation G(r ,  1 )  and its spectral represertations F ( k ,  2) and S ( k ,  w ) ,  which 
uses as a reference state the static correlations and provides a direct connection to 
their time evolution. This is done by applying the structural diffision model (SDM), 
based on the concept of random spatial and temporal processes and their simplest 
formulation in terms of diffusion-type processes in ‘structure space’, evolving both in 
space and in time. At present we restrict the modelling to the central (Rayleigh) 
peak mntribution to S(k,w), leaving the treatment of the acoustic modes (Brillouin 
peaks) to a separate publication. 

In section 2 we present the model in some detail and examine its implications for 
the computation of static and dynamic correlation functions. In section 3 we derive 
an analytic expression for F(k,t), which is a functional of the characteristics of the 
static structure and of a temporal diffusion parameter. We illustrate the usefulness of 
our approach by explicit computations for an amorphous metal (supercooled liquid 
AI). The relaxation time of F(k,t), computed in section 4, exhibits the well known 
slowing down (51 when L! is close to the main peak of the static structure factor S( k). 
(A remnant of this behaviour is also observed for the second peak) For k i 0 the 
relaxation time remains finite. We give a brief summary and discussion of further 
implications of our model. 

2. Structural and temporal diffusion 

The SDM was originally devised for static correlations. It is based on associating the 
spatial atomic configurations with a reference ordered structure, specified by a lattice 
L .  It is assumed that the local atomic configuration, Le. the relative position of small 
groups of neighbouring atoms, can always he well approximated by a suitable domain 
in the ordered srrucrure i. Fu’unnermore, rjpariai liiwrdcr 0, iniruriuccd iw a ~auriur~r 
relative displacement of the locally observed lattice structures at different points in 
space [6]. The random process is taken to be a spatially (radially) evolving diffusion 
process in ‘structure space’. The resulting expression for the radial distribution 
function g( T )  has the form of a theta-type infinite series: 

where 

G,( T - )  = p C ,  exp( - Wb:)[sin( b, T - ) ] / ~ ” T - .  (3‘) 
Here (3) is a sum over all points (shells) of the reciprocal lattice L‘ = {b , , )  in 
‘structure space’, p is the density and C5, is a ‘unit-cell structure factor’ given by 
C, = C(b, ) ,  where 
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with the sum in (4) extending over the R ,  points in the unit cell. W = W ( r )  > 0 
serves as a ’width function’ which is a measure of the decay of coherence between 
local structures at two localities separated by a distance T.  By the SDM it follows that 
W ( r )  is a monotonic increasing function of T satisfying 

W ( r )  = Dr r-co W‘(r)+O r - 0  (5) 

with D a characteristic coefficient of the ‘structural diffusion’ process. 
An alternative representation of C ( r )  obtained by applying the Poisson sum 

formula to (3) exhibits the role of W as a dispersion function. In this representation, 
G(r) is given as a sum over all points of the direct lattice L = {a f i }  in structure 
space: 

G(1.1 = C G p ( r )  (6) 
P 

where, in the case of a simple lattice in three-dimensional space, when C, = 1, we 
have 

G,(r) = [1/(4?rW)3/2](exp(-la, -vlz/4W)), (6’) 

with the osuhscripted angular brackets denoting an average Over all orientations of 
the position vector r or, alternatively, mer all orientations of the lattice L. Thus 
(6) presents G ( r )  as a sum of nearly Gaussian-shaped functions each centred at 
some r rr a, and having approximately a dispersion W = W(n,). The two 
representations (3) and (6) stress different aspects of the function C(r) .  Series 
(6), which converges rapidly for small r, exhibits mainly the spatial arrangement of 
neighbouring atoms, whereas (3), which converges rapidly for large T ,  exhibis the 
extent of spatial coherence between local structures at medium and large separation. 

The SDM has been shown to be a useful tool for modelling static pair correlations 
of liquids and amorphous solids (see references in 171). However, as we wish to 
extend the model to dynamic correlations, it has been suggested previously [SI that 
van Hove’s time correlation function G( r ,  t ) ,  which is an extension of C( r )  to t > 0, 
can he obtained by adding a temporal diffusion to the structural diffusion process. 
On the assumption that the WO processes are independent, this amounts to replacing 
W ( T )  by 

W = W ( r , 1 ) = W l ( r ) + W o ( l ) 2 D r + D , l  r , t-- tco (7) 

in (3‘) and (6‘). Here D, has the dimensions of a diffusion coefficient of a usual time- 
evolving diffusion process while D,/D = co bas the dimensions of a velocity. Either 
D, or cU can sewe as an additional independent parameter required in modelling 
the time correlation function. Clearly, the resulting correlation function, which we 
denote by CD(r , t ) ,  can represent only a diffusive and not an ordered motion of the 
atoms. 

Applying (7) to (3’) and (3), we have immediately 

G D ( T > t )  = C f U ( l ) G ” ( T )  (8) 

f,(l) = exP[-Wu(t)btl. 

Y 

where 
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Since f,(O) = 1 for all U, we have C,(r,O) = G ( r ) .  Adopting the asymptotic form 

W"(t) = D"t (9) 

as valid for all t > 0, equation (8) enables an explicit evaluation of G,(r,t) to be 
made from available data on the static structure. 

The corresponding dynamic scattering function S,(k,w) consists of a single 
central peak which does not include contributions of the elastic motion (hydrodynamic 
modes) of the fluid. Clearly, this motion exists in all condensed systems independently 
of any dissipative processes. Its contribution to C( r,  2 )  can be obtained by considering 
the vibrational motion in a solid and using the SDM assumption of a reference ordered 
state to extend the results for solids to condensed systems in general. A further 
extension of the SDM is also required to include a random process for the local 
ordered motion of the atoms [9]. Details of this treatment Will be presented in 
a separate publication. Here we only note that by linearized hydrodynamics the 
contribution of the hydrodynamic modes to the central peak of S( k, w )  is small for 
liquid metals, where C,/C, 2 1. Thus, for such liquids the main contribution to the 
central (Rayleigh) peak of S ( k , w )  should come from S,(k,w). 

3. Evaluation of static and dynamic scattering functions 

The intermediate scattering function is related to C,(r,t) by 

~ , ( k ,  t )  = [ G ~ ( T ,  1 )  - p] exp(ik. r ) d Z r .  (10) J 
Substituting (8) into (lo), we obtain the series representation 

and the primed summation indicates omission of the U = 0 term. 
that F,(k,O) = S(k). 
representation 

Again, note 
7he dynamic scattering function has similarly a series 

where 

f,(t) exp(-iwt)dt. 

For the purpose of an accurate numerical evaluation of F,(k,t) as a function 
of k, (10) can be used provided the contribution from self-correlations, i.e. the 
contribution from C ( r )  in the neighbourhood of r = 0, is properly taken into 
account. Since in the numerical integration of (10) we use series (6) (with (6') or its 
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extension to t > 0) to evaluate G(r,  t )  at small r-values, we see that the dominant 
contribution in the neighbourhood of r = 0 comes from the p = 0 term of (6): 

G,,(T) = [ I / ( ~ X W ) ~ / ~ ~  exp(-r2/4w). (14) 

In fact, since for the condensed systems considered we usually find that D / a  < 0.02 
(where a is the nearest-neighbour distance), it follows that G,(r) is a sharply peaked, 
approximately Gaussian function at around T = 0 with a width much less than a. 
Thus, G J r )  can he viewed as effectively representing a 6(r)  function which is 
the  correct contribution of the self-correlations to G ( r ) .  Furthermore, for t > 0, 
where W,(r )  ez Wu(t)  = D,t in the neighbourhood of T = 0, one can replace 
W = W(r, t )  in the p = 0 term in (14) by Wu(t) and obtain for G,(r,t) an exact 
Gaussian in space. This term will then contribute to the integral in (10) a term 
exp(-lcZD,t), which conforms to the correct asymptotic behaviour of F ( k , t )  at 
k - 00 for all t 3 0. As an example, figure l(a) shows F,(k,O) = S ( k )  evaluated 
numerically from (lo), using the g ( r )  of liquid AI obtained from (3) or (6) with 
optimal parameters ( L  E a distorted FCC uni t  cell: a = p = n/3, y = 67.7' 2 AT; 
D / a  = 0.008 for T = 930 K) found by Lopez and Silbert [IO] when fitting the 
Monte Carlo simulation data of Smolander 1111 to the SDM. 

8 'mL!"< 2m im )!"A-; 

/ m  

7m I.0 210 *I 0 om rm ,MO >,a 28 0 
Om 

Om 
h h 

Figure 1. S ( k )  calculated from (a) equation (IO) and (b) equations (11) and (16). 

4. Time dependence of F D ( k , t )  

Using (10) to evaluate F,(k,t) as a function of t, we have observed a persistent 
unphysical behaviour violating the condition IF,(k,t)l < S ( k )  for short time 
intervals, in particular in the small-k range where S ( k )  << 1. We attribute this 
to an unresolved sensitivity to errors in the numerical integration. Consequently we 
have sought to devise a function W (  r )  = W,( P) which enables an analytic evaluation 
of (11') to be made. We made use of a form previously introduced by Egelstaff and 
Schofield [12] and Schofield (131, namely 

W ( r )  = D (J...:- .) ( '5)  

Substituting (15) into (3') and applying to (11'), we obtain 

S,(k) = 2rrr:Db, exp(Dr,bt)(l/k)[I(,(X_)/X_ - I<,(Xt)/Xt] (16) 
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where IC,(X) is a modified Bessel function of the second kind and 

X ,  = X(Mc) = r , , 4 ( D b U )  2 + ( b , * k ) Z .  (17) 

The resulting S ( k ) ,  obtained by substituting (16) into ( l l ) ,  with t = 0, is 
represented in figure l(b). Comparing with figure l(a), we see that the analytic 
expression (11) obtained gives an accurate representation of F , ( k , t )  for k > 0 
up to and including the first peaks of S ( k )  and that only for kn > 15 does it 
show significant deviation from the correct asymptotic form. Possibly the deviation 
is due to the slower convergence of the series for larger k but it might also arise 
from an inconsistency of non-integrability of C(r )  at around r = 0, due to the T - ~  

divergence of G,,(r) produced when (15) is substituted into (14). This divergence 
can be eliminated by adding a small correction E << Dr,, to W,(r ) ,  i.e. making 
the replacement W ,  + W, + E. This amounts to replacing the exponent in (16) 
by (Dr, - t ) b ; ,  which almost eliminates the deviation from the correct asymptotic 
behaviour, observed in figure l(b), within the range ka < 30. Necessarily a suitable 
choice of E depends on D and r,,. 

Returning to the t-dependence of F,(k,t), we look for a unified time scaling 
over a large range of &values. n o  different definitions of a characteristic relaxation 
time have been considered: (1) an average lifetime given by 

and (2) a reciprocal initial rate of decay given by 

TU = r d k )  = -(Ud{ log I~~(~ . , t ) I } /d t l l l~=o) - ’ .  (19) 

Writing (11) in the form F , ( k , t )  = C,S,,exp(-A,,t), A,, = Dub?, we have 

We have found ~ ( k )  preferable as a scaling parameter for the ldependence of 
F,(k,t) and have used it in a common plot of this function for several different k- 
values in figure 2 Both r ( k )  and T,,( k )  (figure 3) exhibit two characteristic features of 
the relaxation time of F,(k,l): it remains finite for small k and it has a maximum in 
the neighbourhood of the first peak of S ( k ) ( k a  rr 7.3). the latter being in conformity 
with the phenomenon of de Gennes narrowing in S ( k , w ) .  

In the foregoing calculations, all distances are given in units of n (the nearest- 
neighbour distance), and time intervals are given in units of az/D,,. D, is the 
characteristic parameter of a random process describing the slow diffusive change in 
the rclative position of a group of neighbouring atoms. There is no doubt that D, 
is related in mme way to the diffusive process of a single particle but it cannot be 
identified with the single-particle diffusion coefficient. The d u e  of D, can be found 
directly from empirical S ( k , w )  data when S ( k , w )  rr S,(k,w). 
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Figure 2 FD(k,t)/S(k) 
as a function of t / T ( k )  for 
ka-values of 0.05 (0), I 
(0), 7.3 (+) and 10 (x). 

5. Concluding remarks 

The sDM has been designed to answer the following two questions. 

(1) How are neighbouring atoms arranged in space? 
(2) How does this arrangement vary with position in space and in time? 

By relating the local arrangement of atoms to a reference lattice L it is possible to 
describe the disorder in the system as a kind of mismatch between local arrangements 
at different localities, and hence to give a formally and computationally compact 
answer to both questions. 

Clearly, an optimal L cannot be strictly unique since disorder introduces an 
element of randomness into the local arrangement of atoms. Because of this 
randomness, one can choose for L increasingly complex lattices possessing larger unit 
cells, together with smaller coefficients D, giving more accurate modelling of given 
g( T )  data. Indeed, in the limit of a large cell having the size of a typical volume used 
in computer simulations with periodic boundary conditions, putting D = 0 we can 
choose any representative configuration of the atoms as defining the unit cell of L. 
We denote any such macroscopically complex lattice by L,.  In practice the usefulness 
of the SDM lies in finding a relatively simple L which can he visually grasped and yet 
reproduce with sufficient accuracy the g ( T )  data. The details of the structure and its 
statistics are then hidden in the spatial random process, exhibited by D > 0. 
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One could compare the SDM with the recently developed reverse Monte Carlo 
(RMC) method of generating optimal macroscopic configurations ( L m )  of atoms fitting 
given experimental structural data [14,15]. In a way the SDM can be viewed as 
an economical version of the RMC, replacing the modelling of g ( T )  (or any other 
structural data) by 3N parameters-the p i t i o n  coordinates of a large number N 
of atoms, by a small number of parameters, of the order of 3n + 1 (counting the 
parameter D as well), where n is the number of atoms in a unit cell of a relatively 
simple L. 

'Ib conclude, the SDM provides a modelling by analytic functions which are 
computationally convenient and can produce practical results for both the static and 
the time-dependent pair distributions as well as their spectral representations. As 
far as static atomic distributions are concerned, the model is expressed in sufficiently 
general terms to be amenable to systematic improvements. Moreover, new available 
models of ordered structures, such as incommensurate [16] or aperiodic [17] crystals 
and quasi-crystalline glasses [18], whose structure is derived from lattices in m > 3- 
dimensional space, or the notion of twinning planes at the unit-cell level [19], which 
gives a unified characterization of whole families of metallic and metal-metalloid 
glasses over a continuous range of variable concentrations [20], have provided us with 
a greatly enriched selection of possible, relatively simple local structures. 

As far as the time evolution of such structures is concerned, the model is consistent 
with the view that a condensed system imposes strong constraints on possible 
trajectories of individual atoms and forces groups of neighbouring atoms to move 
collectively with only a slow diffusive change in their relative position [21], passing 
through a succession of local structures realized in an equilibrium configuration of 
atoms. 
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